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Source: To the Theory on Radiation
Transfer in a Non-Homogeneous
Medium

V.V. Zheleznyakov

The well-known equation on the radiation transfer in a non

homogeneous medium.(l) is derived from the continuity (conservation)

equation for the density of radiation energy in the space co-ordinates

and in the directions of group velocity. The Oster theory of transfer

in non-homogeneous medium (1) is shown to be inaccurate; it was,

therefore, erroneously applied by Oster and Sofia (2) in their research

on radio emissions of the quiet Sun.

1. The problem of radiation transfer plays a basic part in many

problems of astro-physics and radio-astronomy, thus justifying the

publication of a special article to establish a true transfer equation.

We will demonstrate below the inaccuracy of the radiation transfer

equation in a non-homogeneous medium as established by Oster (1) and

the correctness of the same equation in form (1). We will then select

an expression for the radiation capacity at in the articles (1,2) and

discuss the results derived when applying Oster radiation 'transfer

theory to the problem of plasma radiation, and in particular,, to the

problem of radiowaves from the quiet Sun.

It is a well-known fact (see, for instance (3,4) and (5),

paragraph 26) that the equation of radiation transfer in a non-

homogeneous isotropic medium is as follows:*

d t l

*At this time, as well as below, the spectral values of intensity I,
the radiation capacity a, etc. are being considered. However, in
order to simplify the recording, we disregard, as a rule, in this
case, the index , in the corresponding values.
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where n is the refraction index, (-the radiation intensity in relation

to the single solid angle a is the radiation capacity of the unit

volume, >i(the absorption coefficient, dl/ the element of ray length.

This equation is correct in an area where the geometrical optics have

a regular approximation and is recorded for a stationary case when)

does not depend upon the time t.

The equation (1) whish determines the balance of radiation

energy along the ray is usually obtained in the following manner. If

the transparent(L = O)and the non-radiating(-=lO)'medium is non-homogeneous,

the radiation intensity, along the ray changes proportionally to n2 due

to refraction. In other words,

Const - 0 (2)n= const, 1 ) ° 

or,

dl _ 21 dt

dl I dl ... .

which is the same.

(see, for instance, (3) and (5), para 26). The effect of absorption

(p, 4 O)and radiation(a 1 O)lin the medium will reveal itself in the

additional change in intensity along the ray; this change corresponds

to 'a-t-i/per one unit of the ray length. By adding the last value to

the change I/by means of refraction (3) we obtain the relation

d 21 d a-dl + a - 1,1
dl n dl
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which coincides with the equation on radiation transfer in a non-homogeneous

isotropic medium (1)*.

These considerations seem to be sufficiently convincing. Yet

doubts as to the accuracy of equation (1) were expressed in the references

(1,2) as well as in the article (3).

In the article (1) Oster suggested a different equation for

the radiation transfer in a non-homogeneous medium, which is presented

below:

VrpV f = q - f . (4) 

where vrpl is the photon group velocity, f - the number of photons in a

-unit of volume and solid angle, (q - the number of emitted photons per

volume unit and in a unit of time and solid angle, al when multiplied

by f, is a factor characterising the number of absorbed photons. By

multiplying both components of the equation (4) by the photon energy

we reduce (4) to:

vrVu = a -- (5)

where the photon density f is now substituted by the usual macroscopic

value of the radiation energy density in a single solid angle u = tof. 

Inasmuch as the ray direction coincides with the group velocity

*A generalization of the radiation transfer equation in case of a non-
homogeneou.s anisotropic medium is presented in (5), para 26:

(n,1l1 cos a I)d(Ij I cos a I/n,),'d1=aj - j/j. 

Here the a is the angle between the wave vector kj and the group

velocity d,!dki;; the index j shows that the corresponding value relates
to a wave of one type (regular or irregular).
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direction, the equations (4), (5) may be presented as:

df
rp d = q - f, (4a)

dil
VP dl = a - u. (5a)

In connection with Oster equations the following could be

said. Equation (4) for photons in a medium has been written by Oster

by analogy with the kinetic equation for particles in the absence of

forces:

+ VVf = G, (6)

where f is the particle distribution function, G - the component which

takes into account the "births and the "disappearance" of particles.

In a stationary case (df/la! = 0) and providing G _ q - of. this

equation is transmuted into (4).

The desire to compose a radiation transfer equation by the

same method as the kinetic equation for particles is quite justified.

Actually, the kinetic equation composed as

_a/ +W'F w=o(7)
at 7t1

(where F - is the force, acting on the particle by the mass m), is a

result of the continuity equation (conservation equation) of particles

density in a phase space of co-ordinates r and velocities v*:

+ v,(rf) + V(vf) = (8)Ot

*Periods here mark total derivatives in time t.
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and the particle motion equations:

r = v; v = F(r)/m. (9)

An analogous correlation to (8) exists for the energy radiation density

u, when relating to a single solid angle. However, during the process

of deriving the transfer equation from the continuity equation (conservation

equation) we arrive at the relation (12a) which does not coincide with

the Oster equation (5); yet the transfer equation (1) can be derived

from this relation - which we will readily demonstrate.

2. Thus, we first derive the equation of radiation transfer in a

non-homogeneous medium from the continuity equation for radiation

density u.f

First, it should be taken into account that the derivative r

which now represents the transfer velocity of the radiation energy

coincides with the group velocity Vrp-=d/dkj (k is the wave

vector). The absolute value of the group velocity

hdw d c (10)
VP dkI L 

is uhabiguously connected with the value of the radius-vector r (through

the refraction index n=n(w, r))|. The energy density ul is therefore

(to the contrary of function f (r, v, t) for particles) only a function

of the time, the radius-vector r and the direction of the group velocity 1:,

u = u(r, 1, t) (11)
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( It is a single vector directed on a tangent to the ray, in other

words, along the group velocity: Vp = Ivrp).I It becomes clear

now that the phase space of the radiation will be r, I, unlike the

case of the r, v;! of the material particles; accordingly, the

continuity equation for radiation density in space r, I will be

recorded in the following manner: *

au
i+ Vr(Vrp) + VI(iu)= G -a - U (12)

(Vt(Iu) stands for a two-dimensional divergence on a single vector 1).|

The second equation (9) is, evidently, not applicable to radiation;

it should be substituted by an equation defining the ray configuration

in geometrical optics approximation (See (6), para 65):

d/lli II~rI' (13)
i

The relation (12) does not correlate with Oster equation (5). It is

true that when we transcribe the relation (12) as follows:

-,- VrpVr 1 + 'itVrVrp + Vl'")= a-cu,, (12a) 

*By integrating the equation by terms (12) along all directions 1
-(along all solid angles dQ,i )and taking into account that uda 2 i

are the radiating energy densities jvpudQ = s/

s - is the Pointing vector vi(u)dQ =0, i we find, G = 0,

the Pointing theorem in a non-absorbing medium:

aw/dt+Vrs = 0. 
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we perceive that in a stationary case (au/lt ) = it differs from

(5) in the terms tvrv, I,, v(lz) l &n the other hand, it

is not difficult to show that, taking Miho consideration (13) and

under conditions of &oulot = 0| the equation (12) becomes

the well-known radiation transfer equation (1).

In order to prove the last statement we will notice that*

I = VrPU; Vr.pU = lv.ptU = 1I;

i =d dl dddl dt = -vp; a = = v,.p.

(14) 1

Taking into

the form

account these evident relations, we transcribe (12) in

a d+ Vr(Il) J+ VI = l -a (15) 
}

or

1 d1 dl dl
% odi + ladI + IV, di + vd = a - p.V'P at di di (16)'

When passing over to (16) the equality u i /v, was taken into

account; the v.p\ depends only upon r, and does not depend upon t

(in a medium with properties not changing with time); in addition the

fact that V, = 0,} is taken into consideration inasmuch as vector 1

*The equality 1=: urpu is true only in a weak absorption medium.
The latter serves, together with the requirement of validity of
the geometric-optical approximation as a condition for the application
of the transfer equation.
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is an independent variable together

expression for di/dll (13) in

with r. By substituting the

VI(dl/dl),~' we obtain

Vd --- (IVI) vI -- IVt (Irvn) 
di d-I =i nfl

However, V11 =2;\ in addition

the gradient on the single vector 1

Therefore,

dl 2
V1I - =

dl n

lV{i (lVrl)I = 0, inasmuch as

is orthogonal to this vector.

(lV,tl) I

and, consequently, equation (16) passes into

I .2 d
Vrpt 

+ I + = at I. 

By dividing all terms of the equation by n2 and somewhat transforming

it, we get

2v at 
'

] VI -- /. - i n( 17).,
n rp ad ai 1 /,.2 1

The relation (17) represents an equation with partial derivatives for

I with independent variables r, 1, t.

Let us consider, at present, the changes in relation I/n2

along a definite ray:

(18)
r = r(l); I = I(l),
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where 1I is the coordinate along the ray (the length of the ray).

Inasmuch as both the r and the 1 change when 1 changes, the derivative

of //n121 along the ray is

d f dr \ /d+ (I (_\ / dl (I

(In passing over the last equality it has been taken into account that

dr/dl = 1.)l In the right part of the equation (19) vectors r and

1 are independent - they are interconnected over the parameter

(see (18)). The value lVr(I/n2 ) + (dIldl)vj(I/it 2)\

presented in this part may be found from equation (17); it equals:

a / ! ()/ 

n2 t12 l 2 V t (20)

under conditions that the r and 1 values are computed along the ray

(18). Substituting (20) into (19), we obtain a final

A+ / $ l (l= a -pi (21)i

or

1 &((Dn) ai Z :I
~~~~~c d~~~~~~~~ow~ At(21a)c aw at dll/, l- Fl

which is the same thing.

In a stationary case it coincides with the well-knomwn transfer

equation (1). We notice that equation (17) was obtained actually in

an analogous manner by Harris (8). However, he was doubtful of the

accuracy of the equality (19) which gave him grounds for the statement

that equation (17), in the final count, cannot be reduced to equation

(121).
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3. Let us consider the differences in intensity of radiation

which result when the true transfer equation is applied (1) and when

Oster equation (5a) is used in a system where particles are in the

equilibrium state (in the sense of their velocity distribution). The

radiating capacity of such a system a is connected with the absorption

coefficient il of the Kirchoof equation

a = tL(O), ,(22)

where I( o) -

system. (If

where (0)(

26). Taking

the equality

is the intensity of the equilibrium radiation of this

the refraction index in this system equals n- then

I(°) = n'V0
°

), (23)/

is the equilibrium intensity in a vacuum; (See (5), para

into account (22) and (23), the first and the last fromi

(14) the equation (1), (5a) become

I I I
2 + "' ' = '' (0)'

dl(rp I) + 11 rp VrpIo)dI , ) I V 0 , P P P

(24)/

(25)

The solution of the transfer equation (24) can be recorded

in the form ('para 26, (5)).

(26) !e- f..oe-d-. + e-,( I'
n. . · \/z 2 t= '

o
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where the optical density | is expressed by using the p; integral

(along the ray).

dl ,

At the same time the expression

. e- I (0) e dr Jr e- !

serves as a solution to Oster's' equation (25). '

In the homogeneous medium ( rp= const, n2 -= cort); both

expressions (26), (27) coincide. However, in a non-homogeneous medium

they yield different results. Thus, for instance, the radiation

intensity transferring from the absorbing layer into the vacuum equals

according to (26)

I= e- 1i )e 1d' (28)/

while (27) in this case becomes:*

1p'I = e- g IO)/t ec,. (29) 
Vrp

'0

The expression (29) differs from the correct equation (28) by the

presence of the factor cnI2/vrD in the integrand expression.

In plasma vrp = cna and the factor ct2lvrp n<l ;1 it

becomes clear that the values obtained when the Oster equation is

*In the transition from (27) to (29) the vrp=c in the vacuum is
considered to be equalling.c.

C-
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applied to the plasma radiation problem are too low (at equal values

of ).l

The inaccuracy of the solution (29) is clearly seen in the

case of radiation inside a non-transparent cavity with a temperature

T. If the refraction index is, in the center of this cavity n = 1,

then according to thermodynamics, there exists in the cavity an

equilibrium radiation with an intensity of I - /°)' regardless of the

type of walls - the values n, vrp\ etc (the only requirement being

the non-transparency of the walls.). The same result is obtained

from the solution (28): at a T = const the value I = /0)(1- e-)l

is true for non-transparent walls with a ))I11 the intensity in

the cavity is / = 0°O).1 Yet, when applying the Oster equation a

different result is obtained: at a T = const and a constant value of

cn2 l/vrp in the walls* the value I = 1((c1t 2 /vrp)(l e-:);

if the walls are non-transparent ( > 1),I then contrary to

thermodynamics, the intensity in the cavity** ! = /(O(c/t 2 /vp) r lO!)

In addition to an incorrect equation for transfer, the

articles (1,2) also use an erroneous expressioi for the absorption

coefficient F,\ which determines the optical ddensity ~ = l' l/

*The transfer.equation (1) and its solution (28) are recorded under
conditions that the radiation reflection frommsharp borders is not
present. Therefore, in the example analyzed, the value cn2 ivrpl

must be constant only in those layers where the absorption coefficient
is ~ = 0i To achieve an absence of reflections it is necessary to
have these layers separated by a smoothly-non-homogeneous medium
from the center of the cavity.

**The fact that Oster transfer equation disagrees with thermodynamics
was mentioned in Cronyn's article at an earlier date.
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Oster contends that the radiation capacity of the system a=D;j

does not depend upon the presence of the medium, in other words, upon

the refraction index n. In accordance with the Kirchoof law a = /1(0)I

t thereby follows that -! (providing the equilibrium --.

intensity is I(0)cnl2/ see paragraph 26 (5)). In other words,

the absorption coefficient in the medium is

FP = ~on-'~,
~

(30)!

where I'\ is the absorption coefficient of the system of radiating

particles in a vacuum. According to Oster, the, it is sufficient to

know the absorption coefficient in a vacuum to be able to determine

the absorption coefficient in a medium.

Yet, it is a well known fact that the presence of a medium

with a refraction index n 1 1| substantially changes the character of

radiation of individual elemental centers (charged particles, atoms,

molecules). Thus, the bremstrahlung intensity of one electron is

proportional to n (in the dipole approximation); at sufficiently

large n values of electrons moving at a v velocity, the Vavilov-

Cherenkov radiation is generated which is absent in a vacuum, etc.

It is clear that the radiation characteristics of a system of such

particles change considerably depending upon the presence or the

absence of a medium, and, in each case, this change will be different.

For example, we will analyse the breamstrahlung in the

connection with plasma absorption. The radiation apacity is a

proportionate to n (as in the case of an individual electron; see

above); the value



-14-

(31)
/(0)

while according to Oster it is [ co n-2.j The accuracy of the expression

(31) is proven also by the expression for the absorption coefficient

of electromagnetic waves in isotropic plasma derived from the elementary

theory (See para 7, (7)):

27r_ 2re"2N s"" .(32)!
mW(W2 +23(,)n

Equation (32) characterizes the absorption connected with the

bremstrahlung by the system of N electrons which undergo collisions

with ions with a frequency 3rp; i it is also inversely proportional

to n. (In (32) e is the electron charge).

It follows from the above that the transfer equation in a

non-homogeneous medium introduced by Oster and his method of computing

the absorption coefficient in a medium by means of the value of the

absorption coefficient at 11= I are incorrect. For these reasons

the results of the extensive computations of radio-luminosity on the

disk of the "quiet" Sun performed by Oster and Sofia in article (2)

are incorrect for two reasons. First, the corona and the chromosphere

are non-homogeneous; as explained above, in such cases, the use of

the transfer equation in the form (5), (5a), results in substantial

errors, by underestimating the value of the radio emission intensity.

By comparing equations (28), (29) it is easy to notice that in

different points of the disk these errors will vary; therefore, not



-15-

only the absolute value of intensity, but the character of distribution

of radio luminosity on the disk will differ from the true values.

In the second place, a computation of the absorption coefficient of

the optical density of the sun corona and chromosphere by means of a

"universal" relation between the absorption coefficients in the medium

and in a vacuum (30) also leads to incorrect results.
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